organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl (2S,4R)-4-(4-bromophenyl)-2hydroxy-5,10-dioxo-3,4,5,10-tetrahydro-2H-benzo[g]chromene-2-carboxylate

Wei Zhang, Yifeng Wang,* Guangcun Zhang and Xiangsheng Xu

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: yifengwang108@gmail.com

Received 23 December 2009; accepted 11 January 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.037; wR factor = 0.122; data-to-parameter ratio = 16.7.

In the crystal structure of the title compound, $C_{22}H_{17}BrO_6$, the quinone ring makes a dihedral angle of $81.84(3)^{\circ}$ with the benzene ring. The chiral C atoms, viz. the ring C atoms bearing the hydroxy and bromophenyl substituents, exhibit R and Sconfigurations, respectively. The terminal ethyl group of the -CO₂CH₂CH₃ group is disordered over two sets of sites with site-occupancy factors of 0.64 (1) and 0.36 (1). Intermolecular O-H···O interactions further stabilize the crystal packing.

Related literature

For general background to the modification of hydroxyquinone, see: Rueping et al. (2008); Zhou et al. (2008). For related structures, see: Peng (2006); Nasiri et al. (2008).

Experimental

Crystal data

$C_{22}H_{17}BrO_6$	V = 1024.43 (13) Å ³
$M_r = 457.27$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 8.2993 (6) Å	$\mu = 2.04 \text{ mm}^{-1}$
b = 9.9445 (7) Å	T = 296 K
c = 12.4884 (10) Å	$0.32 \times 0.30 \times 0.28 \text{ mm}$
$\beta = 96.323 \ (2)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.520, \ T_{\max} = 0.565$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$vR(F^2) = 0.122$	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
1549 reflections	Absolute structure: Flack (1983),
273 parameters	2082 Friedel pairs
3 restraints	Flack parameter: -0.008 (11)

9887 measured reflections

 $R_{\rm int} = 0.036$

4549 independent reflections

2257 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O4-H4\cdots O1^{i}$	0.82	1.90	2.716 (4)	177	
Symmetry code: (i) $r \perp 1$ y z					

Symmetry code: (i) x + 1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Professor Jian-Ming Gu, Zhejiang University, for his help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2026).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Nasiri, H., Bolte, M. & Schwalbe, H. (2008). Nat. Prod. Res. 22, 1225-1230.
- Peng, D.-Q. (2006). Acta Cryst. E62, 04706-04707.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.
- Rueping, M., Sugiono, E. & Merino, E. (2008). Angew. Chem. Int. Ed. 47, 3046-3049.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhou, W. M., Liu, H. & Du, D. M. (2008). Org. Lett. 10, 2817-2820.

Acta Cryst. (2010). E66, o388 [doi:10.1107/S1600536810001315]

Ethyl (2*S*,4*R*)-4-(4-bromophenyl)-2-hydroxy-5,10-dioxo-3,4,5,10-tetrahydro-2*H*-benzo[*g*]chromene-2-carboxylate

W. Zhang, Y. Wang, G. Zhang and X. Xu

Comment

The Michael addition to α , β -unsaturated systems is an important carbon-carbon bond-forming reaction in organic synthesis. Hydroxyquinones, quinones bearing a hydroxy group on the quinone ring, are an important class of the naturally occurring quinones with diverse biological activity. The title compound, ethyl (2*S*,4*R*)-4-(4-bromophenyl)-2-hydroxy-5,10dioxo-3,4,5,10-tetrahydro-2*H*-benzo[*g*]chromene-2-carboxylate, was synthesized from a Michael Addition of 2-hydroxy-1,4-naphthoquinone to β , γ -unsaturated α -keto esters. The crystal structure of the title compound (Fig. 1) contains a tricyclic ring system with two chiral centers, which is consisting of a quinone ring and a tetrahydropyrane. One carbon atom of the tetrahydropyrane structure is not coplanar with the backbone, lying 0.554 (4) Å from the mean plane of the rest backbone. The terminal ethyl group of CO₂CH₂CH₃ is disordered over two sites with site occupancy factors of 0.64 (1) and 0.36 (1). Moreover, weak O-H···O and C-H···O intermolecular interactions further stabilize the crystal structure.

Experimental

To a solution of (*E*)-ethyl 4-(4-bromophenyl)-2-oxobut-3-enoate (1 mmol) and 2-hydroxy-1,4-naphthoquinone (1 mmol) in 1,4-dioxane (3 ml) was added 3-((1S)-(6-methoxyquinolin-4-yl) (8-vinylquinuclidin-2-yl)methylamino)-4- ((S)-1-phenylethylamino)cyclobut -3-ene-1,2-dione (0.025 mmol) as catalyst, and the mixture was stirred at room temperature for 12 h (monitored by TLC). Then the solvent was distilled under vacuum, and the residue was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the title compound. Single crystals were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were placed in calculated positions with C—H = 0.98 Å (*sp*), C—H = 0.97 (1) Å (sp²), C—H = 0.96 (1) Å (sp³), C—H = 0.93 (1) Å (aromatic) and $U_{iso}(H) = 1.2U_{eq}$ of the carrier carbon atoms. There is a positional disorder of the terminal ethyl group of CO₂CH₂CH₃, the corresponding atoms C21 and C22 were split into two sites with refined site occupancy factors of 0.64 (1) and 0.36 (1).

Figures

Fig. 1. Molecular structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing of the title compound showing O—H···O interactions (symmetry code i = x+1, y, z).

Ethyl (2*S*,4*R*)-4-(4-bromophenyl)-2-hydroxy-5,10-dioxo-3,4,5,10- tetrahydro-2*H*-benzo[*g*]chromene-2-carboxylate

Crystal	data
---------	------

C ₂₂ H ₁₇ BrO ₆	F(000) = 464
$M_r = 457.27$	$D_{\rm x} = 1.482 \ {\rm Mg \ m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 6026 reflections
a = 8.2993 (6) Å	$\theta = 3.1 - 27.4^{\circ}$
<i>b</i> = 9.9445 (7) Å	$\mu = 2.04 \text{ mm}^{-1}$
c = 12.4884 (10) Å	T = 296 K
$\beta = 96.323 \ (2)^{\circ}$	Block, yellow
$V = 1024.43 (13) \text{ Å}^3$	$0.32 \times 0.30 \times 0.28 \text{ mm}$
<i>Z</i> = 2	
Z = 2	

Data collection

Rigaku R-AXIS RAPID diffractometer	4549 independent reflections
Radiation source: rolling anode	2257 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.036$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -12 \rightarrow 12$
$T_{\min} = 0.520, T_{\max} = 0.565$	$l = -16 \rightarrow 16$
9887 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.125P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.122$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
4549 reflections	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
273 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
3 restraints	Extinction coefficient: 0.032 (3)

Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2082 Friedel pairs Secondary atom site location: difference Fourier map Flack parameter: -0.008 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	0.33160 (10)	0.08140 (7)	0.99547 (5)	0.1284 (4)	
O2	0.4425 (4)	0.3938 (3)	0.2686 (3)	0.0777 (8)	
O3	0.5431 (3)	0.4731 (3)	0.4648 (2)	0.0672 (7)	
O1	0.0040 (4)	0.4443 (3)	0.5476 (3)	0.0859 (10)	
O5	0.6613 (4)	0.2659 (3)	0.5810(3)	0.0889 (10)	
C9	0.1656 (5)	0.3695 (4)	0.2984 (4)	0.0611 (10)	
O4	0.7341 (3)	0.5933 (3)	0.5658 (3)	0.0775 (8)	
H4	0.8167	0.5502	0.5593	0.093*	
C1	0.3205 (5)	0.5027 (4)	0.6295 (3)	0.0570 (10)	
H1	0.2390	0.5695	0.6443	0.068*	
O6	0.7358 (5)	0.3924 (4)	0.7236 (3)	0.1036 (12)	
C11	0.3827 (5)	0.4427 (4)	0.4456 (3)	0.0538 (10)	
C12	0.6071 (5)	0.5058 (4)	0.5745 (4)	0.0606 (10)	
C4	0.0525 (5)	0.3817 (4)	0.3718 (3)	0.0590 (10)	
C2	0.2738 (5)	0.4529 (4)	0.5170 (3)	0.0531 (9)	
C14	0.3196 (4)	0.3945 (4)	0.7159 (3)	0.0569 (10)	
C15	0.3232 (6)	0.4341 (4)	0.8218 (4)	0.0771 (13)	
H15	0.3219	0.5255	0.8375	0.093*	
C13	0.4825 (4)	0.5773 (5)	0.6336 (3)	0.0615 (9)	
H13A	0.4633	0.6660	0.6025	0.074*	
H13B	0.5261	0.5890	0.7083	0.074*	
C8	0.1163 (7)	0.3247 (5)	0.1949 (4)	0.0797 (13)	
H8	0.1922	0.3135	0.1461	0.096*	
C7	-0.0437 (7)	0.2971 (5)	0.1644 (4)	0.0874 (15)	
H7	-0.0758	0.2688	0.0943	0.105*	
C19	0.3191 (5)	0.2591 (4)	0.6952 (4)	0.0629 (11)	
H19	0.3151	0.2295	0.6243	0.076*	
C3	0.1041 (5)	0.4276 (4)	0.4823 (4)	0.0630 (11)	
C10	0.3394 (5)	0.4014 (4)	0.3315 (4)	0.0618 (11)	
C20	0.6695 (5)	0.3722 (5)	0.6254 (4)	0.0685 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	-0.1090 (5)	0.3531 (4)	0.3391 (4)	0.0707 (11)	
Н5	-0.1852	0.3627	0.3879	0.085*	
C6	-0.1585 (6)	0.3107 (5)	0.2360 (4)	0.0795 (14)	
H6	-0.2670	0.2915	0.2148	0.095*	
C16	0.3287 (6)	0.3430 (5)	0.9056 (4)	0.0887 (14)	
H16	0.3334	0.3723	0.9766	0.106*	
C18	0.3245 (5)	0.1658 (4)	0.7774 (4)	0.0755 (13)	
H18	0.3264	0.0744	0.7616	0.091*	
C17	0.3270 (6)	0.2071 (5)	0.8817 (4)	0.0789 (13)	
C21A	0.8604 (17)	0.2834 (14)	0.7646 (12)	0.132 (5)	0.640 (10)
H21A	0.8698	0.2138	0.7112	0.159*	0.640 (10)
H21B	0.9665	0.3215	0.7868	0.159*	0.640 (10)
C22A	0.7845 (17)	0.2353 (15)	0.8537 (12)	0.147 (4)	0.640 (10)
H22A	0.8593	0.1800	0.8983	0.221*	0.640 (10)
H22B	0.6907	0.1833	0.8280	0.221*	0.640 (10)
H22C	0.7523	0.3101	0.8950	0.221*	0.640 (10)
C21B	0.763 (3)	0.2550 (18)	0.780 (3)	0.132 (5)	0.360 (10)
H21C	0.6731	0.2300	0.8194	0.159*	0.360 (10)
H21D	0.7829	0.1840	0.7297	0.159*	0.360 (10)
C22B	0.903 (3)	0.289 (3)	0.849 (2)	0.147 (4)	0.360 (10)
H22D	0.8842	0.2739	0.9224	0.221*	0.360 (10)
H22E	0.9294	0.3819	0.8392	0.221*	0.360 (10)
H22F	0.9924	0.2339	0.8322	0.221*	0.360 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.2086 (8)	0.0939 (4)	0.0809 (4)	0.0050 (5)	0.0071 (4)	0.0256 (3)
O2	0.0728 (19)	0.096 (2)	0.068 (2)	-0.0024 (17)	0.0246 (16)	-0.0008 (16)
O3	0.0554 (17)	0.0802 (18)	0.067 (2)	-0.0018 (14)	0.0092 (14)	0.0006 (15)
01	0.0552 (17)	0.128 (3)	0.075 (2)	0.0008 (16)	0.0111 (17)	-0.0089 (19)
O5	0.094 (2)	0.0616 (19)	0.109 (3)	0.0086 (17)	0.005 (2)	-0.0157 (18)
C9	0.063 (3)	0.062 (2)	0.057 (3)	-0.002 (2)	0.002 (2)	0.0062 (19)
O4	0.0591 (16)	0.0631 (16)	0.110 (2)	-0.0151 (15)	0.0098 (17)	0.004 (2)
C1	0.060 (2)	0.051 (2)	0.061 (3)	0.0031 (18)	0.011 (2)	-0.0041 (18)
O6	0.132 (3)	0.079 (2)	0.091 (3)	0.025 (2)	-0.027 (2)	0.006 (2)
C11	0.054 (2)	0.052 (2)	0.056 (3)	0.0022 (16)	0.006 (2)	0.0052 (17)
C12	0.055 (2)	0.058 (2)	0.067 (3)	-0.0071 (19)	0.002 (2)	-0.0010 (19)
C4	0.051 (2)	0.062 (2)	0.062 (3)	-0.0003 (18)	0.000 (2)	0.0078 (19)
C2	0.042 (2)	0.055 (2)	0.062 (3)	0.0040 (16)	0.0023 (19)	0.0026 (17)
C14	0.062 (2)	0.053 (2)	0.055 (3)	-0.0003 (19)	0.0055 (19)	-0.0066 (18)
C15	0.118 (4)	0.053 (2)	0.062 (3)	-0.006 (2)	0.016 (3)	-0.004 (2)
C13	0.063 (2)	0.0481 (18)	0.073 (3)	-0.001 (2)	0.0057 (19)	0.001 (2)
C8	0.092 (4)	0.094 (3)	0.053 (3)	-0.003 (3)	0.009 (3)	0.001 (2)
C7	0.091 (4)	0.103 (4)	0.063 (3)	-0.008 (3)	-0.013 (3)	-0.005 (3)
C19	0.071 (3)	0.058 (2)	0.060 (3)	-0.0003 (19)	0.009 (2)	-0.0053 (19)
C3	0.060 (3)	0.064 (2)	0.066 (3)	0.0035 (18)	0.010 (2)	-0.0004 (19)
C10	0.063 (3)	0.057 (2)	0.066 (3)	-0.002 (2)	0.013 (2)	0.010 (2)

C20	0.062 (3)	0.065 (3)	0.077 (3)	0.004 (2)	0.002 (2)	0.000 (2)
C5	0.062 (3)	0.077 (3)	0.073 (3)	-0.006 (2)	0.007 (2)	0.002 (2)
C6	0.077 (3)	0.082 (3)	0.076 (4)	-0.007 (2)	-0.006 (3)	0.003 (3)
C16	0.126 (4)	0.085 (3)	0.056 (3)	0.002 (3)	0.014 (3)	-0.012 (2)
C18	0.093 (4)	0.057 (3)	0.075 (3)	-0.003 (2)	0.005 (3)	-0.001 (2)
C17	0.097 (4)	0.073 (3)	0.065 (3)	0.004 (2)	0.004 (3)	-0.005 (2)
C21A	0.160 (14)	0.136 (8)	0.092 (7)	-0.003 (9)	-0.021 (10)	0.026 (7)
C22A	0.133 (10)	0.180 (12)	0.129 (9)	-0.002 (9)	0.013 (9)	0.027 (9)
C21B	0.160 (14)	0.136 (8)	0.092 (7)	-0.003 (9)	-0.021 (10)	0.026 (7)
C22B	0.133 (10)	0.180 (12)	0.129 (9)	-0.002 (9)	0.013 (9)	0.027 (9)

Geometric parameters (Å, °)

Br1-C17	1.889 (5)	C15—H15	0.9300
O2—C10	1.226 (5)	C13—H13A	0.9700
O3—C11	1.360 (5)	C13—H13B	0.9700
O3—C12	1.451 (5)	C8—C7	1.368 (7)
O1—C3	1.238 (5)	C8—H8	0.9300
O5—C20	1.192 (5)	С7—С6	1.384 (7)
С9—С8	1.386 (6)	С7—Н7	0.9300
С9—С4	1.387 (6)	C19—C18	1.381 (6)
C9—C10	1.490 (6)	C19—H19	0.9300
O4—C12	1.380 (5)	C5—C6	1.374 (7)
O4—H4	0.8200	С5—Н5	0.9300
C1—C2	1.500 (5)	С6—Н6	0.9300
C1—C14	1.524 (6)	C16—C17	1.383 (6)
C1—C13	1.531 (5)	C16—H16	0.9300
C1—H1	0.9800	C18—C17	1.364 (6)
O6—C20	1.304 (5)	C18—H18	0.9300
O6-C21B	1.541 (12)	C21A—C22A	1.420 (13)
O6-C21A	1.546 (11)	C21A—H21A	0.9700
C11—C2	1.341 (6)	C21A—H21B	0.9700
C11—C10	1.489 (6)	C22A—H22A	0.9600
C12—C13	1.513 (6)	C22A—H22B	0.9600
C12—C20	1.538 (6)	C22A—H22C	0.9600
C4—C5	1.387 (6)	C21B—C22B	1.415 (14)
C4—C3	1.472 (6)	C21B—H21C	0.9700
C2—C3	1.450 (6)	C21B—H21D	0.9700
C14—C19	1.371 (5)	C22B—H22D	0.9600
C14—C15	1.377 (6)	C22B—H22E	0.9600
C15—C16	1.381 (6)	C22B—H22F	0.9600
C11—O3—C12	117.8 (3)	C14—C19—C18	121.4 (4)
C8—C9—C4	119.5 (4)	C14—C19—H19	119.3
C8—C9—C10	120.3 (4)	C18—C19—H19	119.3
C4—C9—C10	120.2 (4)	O1—C3—C2	118.7 (4)
C12—O4—H4	109.5	O1—C3—C4	120.9 (4)
C2-C1-C14	114.1 (3)	C2—C3—C4	120.5 (4)
C2-C1-C13	109.0 (3)	O2—C10—C11	121.2 (4)
C14—C1—C13	113.0 (3)	O2—C10—C9	122.1 (4)

C2—C1—H1	106.7	C11—C10—C9	116.6 (4)
C14—C1—H1	106.7	O5—C20—O6	124.8 (4)
C13—C1—H1	106.7	O5-C20-C12	125.1 (4)
C20—O6—C21B	108.5 (11)	O6—C20—C12	110.1 (4)
C20—O6—C21A	113.7 (7)	C6—C5—C4	121.2 (4)
C2—C11—O3	125.7 (4)	С6—С5—Н5	119.4
C2-C11-C10	123.2 (4)	С4—С5—Н5	119.4
O3—C11—C10	111.0 (3)	C5—C6—C7	118.7 (5)
O4—C12—O3	105.7 (3)	С5—С6—Н6	120.7
O4—C12—C13	108.1 (3)	С7—С6—Н6	120.7
O3—C12—C13	111.6 (3)	C15—C16—C17	118.6 (4)
O4—C12—C20	110.6 (3)	C15—C16—H16	120.7
O3—C12—C20	105.5 (3)	С17—С16—Н16	120.7
C13—C12—C20	114.9 (4)	C17—C18—C19	120.2 (4)
C9—C4—C5	119.4 (4)	C17—C18—H18	119.9
C9—C4—C3	119.9 (4)	C19—C18—H18	119.9
C5—C4—C3	120.8 (4)	C18—C17—C16	119.9 (4)
C11—C2—C3	119.4 (4)	C18—C17—Br1	121.0 (4)
C11—C2—C1	121.6 (3)	C16-C17-Br1	119.0 (4)
C3—C2—C1	118.7 (4)	C22A—C21A—O6	99.0 (10)
C19—C14—C15	117.5 (4)	C22A—C21A—H21A	112.0
C19—C14—C1	124.0 (4)	O6—C21A—H21A	112.0
C15—C14—C1	118.5 (3)	C22A—C21A—H21B	112.0
C14—C15—C16	122.4 (4)	O6—C21A—H21B	112.0
C14—C15—H15	118.8	H21A—C21A—H21B	109.6
С16—С15—Н15	118.8	C22B—C21B—O6	97.8 (16)
C12—C13—C1	113.6 (3)	C22B—C21B—H21C	112.2
С12—С13—Н13А	108.8	O6—C21B—H21C	112.2
C1—C13—H13A	108.8	C22B—C21B—H21D	112.2
С12—С13—Н13В	108.8	O6—C21B—H21D	112.2
C1C13H13B	108.8	H21C-C21B-H21D	109.8
H13A—C13—H13B	107.7	C21B—C22B—H22D	109.5
С7—С8—С9	120.1 (5)	C21B—C22B—H22E	109.5
С7—С8—Н8	120.0	H22D—C22B—H22E	109.5
С9—С8—Н8	120.0	C21B—C22B—H22F	109.5
C8—C7—C6	121.1 (5)	H22D—C22B—H22F	109.5
С8—С7—Н7	119.4	H22E—C22B—H22F	109.5
С6—С7—Н7	119.4		
C12—O3—C11—C2	7.0 (5)	C9—C4—C3—O1	177.1 (4)
C12—O3—C11—C10	-175.6 (3)	C5—C4—C3—O1	-1.6 (6)
C11—O3—C12—O4	-150.5 (3)	C9—C4—C3—C2	-3.5 (5)
C11—O3—C12—C13	-33.2 (4)	C5—C4—C3—C2	177.9 (4)
C11—O3—C12—C20	92.3 (4)	C2-C11-C10-O2	179.7 (4)
C8—C9—C4—C5	-2.1 (6)	O3—C11—C10—O2	2.2 (5)
C10—C9—C4—C5	179.3 (4)	C2-C11-C10-C9	-0.5 (5)
C8—C9—C4—C3	179.2 (4)	O3—C11—C10—C9	-178.1 (3)
C10—C9—C4—C3	0.6 (5)	C8—C9—C10—O2	2.5 (6)
O3—C11—C2—C3	174.9 (3)	C4—C9—C10—O2	-178.8 (4)
C10—C11—C2—C3	-2.3 (5)	C8—C9—C10—C11	-177.3 (4)

O3—C11—C2—C1	0.8 (6)	C4—C9—C10—C11	1.4 (5)
C10-C11-C2-C1	-176.3 (3)	C21B—O6—C20—O5	-13.4 (15)
C14—C1—C2—C11	-109.5 (4)	C21A—O6—C20—O5	22.5 (9)
C13—C1—C2—C11	18.0 (5)	C21B—O6—C20—C12	167.8 (14)
C14—C1—C2—C3	76.5 (4)	C21A—O6—C20—C12	-156.2 (7)
C13—C1—C2—C3	-156.1 (3)	O4—C12—C20—O5	-115.1 (5)
C2-C1-C14-C19	16.4 (5)	O3—C12—C20—O5	-1.3 (5)
C13—C1—C14—C19	-108.9 (4)	C13—C12—C20—O5	122.1 (5)
C2-C1-C14-C15	-165.1 (4)	O4—C12—C20—O6	63.6 (5)
C13—C1—C14—C15	69.5 (5)	O3—C12—C20—O6	177.5 (4)
C19—C14—C15—C16	1.0 (7)	C13—C12—C20—O6	-59.2 (5)
C1-C14-C15-C16	-177.6 (4)	C9—C4—C5—C6	1.1 (6)
O4—C12—C13—C1	168.5 (3)	C3—C4—C5—C6	179.8 (4)
O3—C12—C13—C1	52.7 (4)	C4—C5—C6—C7	-0.2 (7)
C20-C12-C13-C1	-67.4 (4)	C8—C7—C6—C5	0.2 (8)
C2-C1-C13-C12	-44.0 (4)	C14—C15—C16—C17	-1.4 (8)
C14—C1—C13—C12	84.1 (4)	C14—C19—C18—C17	1.4 (7)
C4—C9—C8—C7	2.1 (7)	C19—C18—C17—C16	-1.8 (7)
C10—C9—C8—C7	-179.2 (4)	C19—C18—C17—Br1	179.2 (3)
C9—C8—C7—C6	-1.2 (8)	C15—C16—C17—C18	1.8 (8)
C15-C14-C19-C18	-0.9 (6)	C15—C16—C17—Br1	-179.2 (4)
C1-C14-C19-C18	177.5 (4)	C20—O6—C21A—C22A	-119.4 (11)
C11—C2—C3—O1	-176.2 (4)	C21B—O6—C21A—C22A	-31 (2)
C1—C2—C3—O1	-2.0 (5)	C20—O6—C21B—C22B	149 (2)
C11—C2—C3—C4	4.3 (5)	C21A—O6—C21B—C22B	43.5 (16)
C1—C2—C3—C4	178.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O4—H4…O1 ⁱ	0.82	1.90	2.716 (4)	177
Symmetry codes: (i) $x+1$, y , z .				

Fig. 2